Note on finding equilibria in signalling games

Adlai Newson, adlai.newson@gmail.com

For this example I'm going to illustrate a general method for finding equilibria of
a signalling game. I'm using question 6 from problemset 4 because it’s the ‘classic’
signalling game setup, but these methods can apply to many types of signalling
games.

Here’s the game tree:
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and the prior is P(S) = 2.
Question 1: Find all the seperating equilibria, or show that no seperating equilibrium
exists. Just a quick refresher, a seperating equilibrium is one where every different
type of Sender (S) player will play a different action (send a different signal). This
means that when the Reciever (R) player sees an action, he knows what type must
have played that action. In general an equilibrium requires that:

Given the actions and beliefs of the other players, I can’t be strictly
better off if I play a different action.

Generally, you will have to take every possible seperating equilibrium, then check
to see if it satisfies the equilibrium condition above. So, what are the possible
seperating equilibria? There are two:

(1) S plays z, Sy plays y
(2) Ss plays y, S plays «

Of course, it’s also possible that there is no seperating equilibrium. So how do we
find out which one (or both, or neither) is the seperating equilibrium? We’re going
to use this algorithm, which works not just for seperating equilibria, but all kinds
of equilibria in signalling games. I’'m putting it in a box because it’s important:
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Algorithm for checking an equilibrium in a signalling game:

Assume the strategies of the sender players, S; and S,

Construct the beliefs of the Receiver player (R) given the strategies in (1)
Find the best responses of the R player, given the strategies in (1) and
beliefs in (2)

Given the best reponses of the R player, check to see if Ss or S; have an
incentive to deviate from the strategies we assumed in (1).

If anyone has an incentive to deviate in (4) then you’re done - what you assumed
in (1) is not an equilibrium. If instead you check all the S types (Ss and S;) and
neither has an incentive to deviate, then you’ve found an equilibrium.

Let’s go through an example of the algorithm to see it in action. Let’s pick the first
proposed seperating equilibrium and see what happens.
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Assume that S plays x, Sy plays y

Given (1), the beliefs of R will be P(S,|z) = 1, P(S;|y) = 1, and the other
two are zero.

Given R’s beliefs, if R sees x, then he thinks he is playing against S, so his
best reponse is a (because in the top-left game, 2 is bigger than 0). Again
given beliefs, if R sees y, he thinks he’s playing against S, so his BR is b
(the bottom-right game). In math:

RBE(z) = a
RPR(y) = b
First consider Ss. If he plays z like we assume he does, he will get 3. If he

deviates and plays y, then the R player will think that he is actually S,
and R will play b, so Ss will get 0. In math,

s, (x| RPH(x)) 3
ms. (WIRPF(y)) = 0

The first equality there says “The payoff to Sy from playing z, given the
best response of R to x, is 3.” So S prefers to stick to the equilibrium
strategy, x. If we do the same for S;, we get

ws, (y| R (y) = 2
ﬂst(l‘|RBR(l‘)) = 1

Since no player has an incentive to deviate, we have found a seperating
equilibrium!

So we found one equilibrium, and now let’s check to see if the other one is also a
seperating equilibrium.




(1) Assume that S plays y, S; plays x

(2) Given (1), the beliefs of R will be P(S¢|z) =1, P(Ss|ly) = 1, and the other
two are zero.

(3) Given these beliefs, here are the best responses:

RBE(z) = b

RPR(y) = a
(4) Given these best responses, let’s check for deviations for Ss. If S; plays y
like we assumed he would, he would get 2. If he deviates and plays x, he

gets 5. That means that there’s an incentive to deviate, so we can stop
here - this can’t be an equilibrium!

It’s also important to note that we could have noticed that playing x for player
Ss is a dominant strategy. Why is that true? Because the minimum possible
payoff that S, could get by playing x is bigger than the maximum possible payoff
from playing y. Since when a player has a dominant strategy, every equilibrium
must have that player playing his dominant strategy, we could have noticed this,
then concluded that the only possible seperating equilibrium is the first one, and
only checked whether S; had an incentive to deviate from y. In general, it is a
good idea to check for dominant strategies before you start checking all
the cases. But the four steps we used above will work whether or not there is a
dominant strategy, which is why I wanted to go through it - on the exam, there
may or may not be a dominant strategy, it just happens that in this game there is
one.

ANSWER: The unique seperating equilibrium is when S plays x, S; plays y, and
R plays strategy sg = (sz,sy) = (a,b), and Pg(S = Ss|z) =1, Pr(S = Si|y) = 1.

Question 2: Find all pooling equilibria, or show that no pooling equilibrium exists.
Now we can again use the algorithm, but there’s a slight problem: how do we
construct the beliefs for the R player when considering the off-path action? What
do I mean? Let’s try the algorithm and see what happens:



(1) Assume that both S, and S; play =

(2) Given this, by Bayes rule, we have Pr(S;s|z) = 2 and Pr(S|z) = %. But
what does R think when he sees someone play y? We can’t use Bayes rule
(try it and see what happens). Let’s skip this and try to move on.

(3) Ignoring the best reponse of R when he sees y, let’s figure out what he
should do if he sees z:

EUg(ale) = =(2)+ (1) =

(4) =

N

EUr(bz) = =(0)+
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Since £ > 1, we have that RPF(z) = a.
(4) Now we check for deviations. Since S always does better by playing =, we
don’t need to worry about him. What about S;? Given that R will play
a, his equilibrium payoff will be 1. But what will R do if S; deviates and
plays y? In this example, it doesn’t matter whether R plays a or b when he
sees y, Sy has an incentive to deviate. Just check the payoffs to see that
this is true. That means that there can’t be a pooling equilibrium.

So that’s lucky for us that in this example we didn’t need to worry about what the
R player would do when he saw something ‘off the path.” But in general what’s the
rule about off-path beliefs? It may sound a bit strange, but you can assume any
off path beliefs you want in order to support (make rational) the equilibrium. For
example, if I needed to, I could have assumed that P(Ss|y) = 1 or P(Ss|]y) = 0;
whatever would make the equilibrium work. That’s a bit of a side note, probably
you won’t run into this for the rest of this course, but it’s something to be aware
of.

ANSWER: By the proof above, no pooling equilibrium exists.

Question 3: Find all semi-pooling equilibria, or show that no semi-pooling equilibria
exist. Again we're going to use the four-step algorithm. A semi-pooling equilibrium
is one where one type of S player plays a pure strategy and the other plays a mixed
strategy (you saw at least one example in your homework). The R player can either
play a mixed or pure strategy.

Since we know that S, is always going to play x, the only possible semi-pooling is
when S plays z and Sy mixes, but we don’t know whether R will play a pure or
mixed strategy.



(1) Assume that S plays x, S; mixes between x and y with probabilities « and
l-«a
(2) Given these, by Bayes rule, the beliefs of R are
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So that it’s rational for R to play a when he sees x if
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NOTE: I made a mistake in this calculation; the inequality
should be a < 2. Since o < 1 by assumption, that means
R will always play a (when he sees x), so R will never mix,
which in turn means there is no semi-pooling equilibrium.
I'm going to leave the mistake in, though, because it shows
you how to find a semi-pooling equilibrium (but the real
answer is that one doesn’t exist).®
Notice that if a = %, R might play a mixed strategy.
From the beliefs we also know that when R sees y, he believes it must
be S;, so RBE(y) =b
(4) Given the best responses, let’s see if S; finds the mixing strategy we assumed
in (1) to be rational. What’s the condition we have to check to see if S is
being rational by mixing? He must be getting equal payoffs from playing
z and y. Let’s suppose that R plays a when he sees x with probability /.
Then the condition for S; to mix is

EUs, (x|R"%(2)) = B(3)+(1-H)(1)
= 1+206
EUs, (y|R%(y)) = 2
so S; will mix when 8 = % Again, we don’t have to check whether S is
being rational because he is playing his dominant strategy. And that’s the
equilibrium!

%Thanks to student Youcheong for spotting the mistake here in the old version




ANSWER: Here’s the equilibrium (the s notation just denotes ‘strategy’):

_ 3 1
S8s;, = T WP 4’ Yy wp 1
Ssg, = X
1 1
= “bwp =), b
SR <<awp 27 WD 2)7 )
4
PR(S:St’!.C) = g
Pr(S=5y) = 1

Let’s sum up what we did for this more complicated case. We used the algorithm
and found that the best response of R depended on the mixing probability «. If
« is big, R plays b, if it’s small, R plays a, but in both of these cases! it won’t be
rational for S; to play a mixed strategy, so we would end up with a contradiction
of our first assumption: that S; is mixing. Therefore, we set o so that R will mix,
then found S that rationalizes S; playing a mixed strategy.

This may seem like a fairly complicated procedure, but the good news is that it will
always work. Probably any question you will get will be similar to this example or a
little bit harder; I probably went into more detail than you will need. The important
thing is that you understand how to check whether something is an equilibrium or
not.. an exam question probably won’t be “Find all of the semi-pooling equilibria
(Hint: there are infinitely many)” but it might be something like “Find the semi-
pooling equilibrium where player two always plays Left.” ie: you will be given some
information, and you will have to show that there is an equilibrium there... if you
figure out the possible cases and apply the algorithm above, you will ace it :)

LCheck to see if this is true



