		Player 2		
		\mathbf{L}	\mathbf{C}	\mathbf{R}
	U	(6, 13)·	(9, 8)	(2, 3)
Player 1	Μ	(5, 5)	(8, 12)·	(6, 4)
	D	$\cdot(7,4)$	$\cdot(11, 6)$	(3,9).

No pure strategy Nash Eq.

Using Iterative Elimination:

For player 1, U is strictly dominated by D, Eliminate U

			Player 2	
		\mathbf{L}	\mathbf{C}	R
Player 1	Μ	(5, 5)	(8, 12)·	$\cdot(6,4)$
	D	$\cdot(7,4)$	$\cdot(11, 6)$	(3,9).

For player 2, L is strictly dominated by C, Eliminate L

		Player 2	
		\mathbf{C}	R
Player 1	Μ	(8, 12)·	(6, 4)
	D	$\cdot(11, 6)$	(3,9).

No further elimination is possible.

Find the mixed strategy Nash equilibrium

$$\mathbb{E}_{1} \{M\} = \mathbb{E}_{1} \{D\}$$

$$8\beta + 6(1-\beta) = 11\beta + 3(1-\beta)$$

$$\beta = \frac{1}{2}$$

$$\mathbb{E}_{2} \{C\} = \mathbb{E}_{1} \{R\}$$

$$12\alpha + 6(1-\alpha) = 4\alpha + 9(1-\alpha)$$

$$\alpha = \frac{3}{11}$$

 $\left\{ \begin{pmatrix} U \text{ with prob } \frac{3}{11} \\ D \text{ with prob } \frac{8}{11} \end{pmatrix}, \begin{pmatrix} L \text{ with prob } \frac{1}{2} \\ R \text{ with prob } \frac{1}{2} \end{pmatrix} \right\}$

2.

Player 3 F

Player 3 S

Player 2 Player 2 RLL R $(1, \dot{9}, 4)$ $(3, \dot{6}, 11)$ Player 1 U(2, 6, 2)Player 1 U $\cdot (6, 2, 5) \cdot$ (5, 2, 2)D $(3, \dot{8}, 7)$ D (5, 4, 5) $(3, \dot{6}, 4)$

No players have strictly dominant strategies

Pure strategy Nash equilibrium:

 $\{D, R, F\}$