PS1 Q4 SOLUTION, ADLAI NEWSON

A particular street corner is a popular location for food carts to sell lunch to people working in the area. Two vendors must each decide in the morning whether to operate carts on a particular day or stay at home. One vendor operates a small size Hot Dog cart (H), the other vendor operates a Thai food cart (T). The Thai food vendor can choose to bring either a large cart or a small cart. There is a higher cost of operating the large cart (additional person), but the Thai food vendor will serve a larger share of the customers. There is fixed demand for 40 lunches at $\$ 10$ each (Total market sales/revenue will be $\$ 400$). The cost of operating a small cart is $\$ 100$ (for both H and T), while the cost of operating the large Thai food cart is $\$ 150$: When only one vendor shows up to the street corner they will get 100% of the sales. If both show up with small carts the two vendors split sales evenly. When the Thai food vendor shows up with a large cart they will get 75% of the sales (25% to the Hot Dog vendor). Note: decisions are made simultaneously.
part a. Can this economic interaction be modeled as a game? If so, identify all the elements that make this a well-defined game.

Answer (1pt): Yes. Formal game definition for this game:

- Players: H, T
- Rules:
- Moves are simultaneous.
- Actions for H are Small cart S_{H}, or stay home, H_{H}
- Actions for T are Large cart L_{T}, Small cart S_{T}, or stay home, H_{T}
- Outcomes: $\left\{S_{H} L_{T}, S_{H} S_{T}, S_{H} H_{T}, H_{H} L_{T}, H_{H} S_{T}, H_{H} H_{T}\right\}$
- Payoffs:
$-\pi_{H}\left(H_{H}, L_{T}\right)=\pi_{H}\left(H_{H}, S_{T}\right)=\pi_{H}\left(H_{H}, H_{T}\right)=\pi_{T}\left(H_{H}, H_{T}\right)=\pi_{T}\left(S_{H}, H_{T}\right)=$ 0
$-\pi_{H}\left(S_{H}, H_{T}\right)=\pi_{T}\left(H_{H}, S_{T}\right)=300$
$-\pi_{H}\left(S_{H}, S_{T}\right)=\pi_{T}\left(S_{H}, S_{T}\right)=100$
$-\pi_{T}\left(H_{H}, L_{T}\right)=250$
$-\pi_{T}\left(S_{H}, L_{T}\right)=150$
$-\pi_{H}\left(S_{H}, L_{T}\right)=0$
part b. Show the game matrix for this interaction.
Answer (2pts):

	${ }^{c} H_{H}$	
L_{T}	150,0	250,0
S_{T}	100,100	300,0
H_{T}	0,300	0,0

Obviously any permutation of rows and columns or matrix transpose is also acceptable.
part c. Does either player have any strictly dominant strategies?
Answer (.5pt). No.
part d. Does either player have any strictly dominated strategies?
Answer (.5pt). Yes. H_{T} is strictly dominated by L_{T} and S_{T}.
part e. Identify all Nash equilibria to this game.
Answer (1pt). We look for all possible mixed strategy equilibria (which will include the pure strategy equilibrium $)$. Let $\alpha=\operatorname{Pr}\left(H\right.$ plays $\left.S_{H}\right), \beta=\operatorname{Pr}\left(T\right.$ plays $\left.L_{T}\right)$. Then

$$
\begin{aligned}
\mathrm{E} \pi_{H}\left(S_{H}\right) & =\mathrm{E} \pi_{H}\left(H_{H}\right) \\
100(1-\beta) & =0 \\
& \Longrightarrow \beta=1
\end{aligned}
$$

For $\beta=1$ to be supported by a rational player T, we require

$$
\begin{aligned}
\mathrm{E} \pi_{T}\left(L_{T}\right) & \geq \mathrm{E} \pi_{T}\left(S_{T}\right) \\
150 \alpha+250(1-\alpha) & \geq 100 \alpha+300(1-\alpha) \\
50 \alpha & \geq 50(1-\alpha) \\
& \Longrightarrow \alpha \geq \frac{1}{2}
\end{aligned}
$$

Therefore the set of Nash equilibria is

$$
\left\{L_{T},\left(S_{H} \operatorname{wp} \alpha, H_{H} \operatorname{wp} 1-\alpha\right)\right\} \quad \forall \alpha \in\left[\frac{1}{2}, 1\right]
$$

